Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3701, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355682

RESUMO

Usher Syndrome classification takes into account the absence of vestibular function but its correlation with genotype is not well characterized. We intend to investigate whether video Head Impulse Test (vHIT) is useful in screening and to differentiate Usher Syndrome types. 29 Usher patients (USH) with a genetically confirmed diagnosis and 30 healthy controls were studied with vHIT and dizziness handicap inventory questionnaire (DHI). Statistical significant differences between USH1, USH2 and controls were found in the vestibulo-ocular-reflex (VOR) gain of all SCCs, with USH1 patients consistently presenting smaller gains. VOR gain of the right lateral SCC could discriminate controls from USH1, and USH2 from USH1 with an overall diagnostic accuracy of 90%. USH1 DHI correlated with VOR (ρ = - 0,971, p = 0.001). Occurrence rate of covert and overt lateral semicircular canals refixation saccades (RS) was significantly different between groups, being higher in USH1 patients (p < 0.001). USH1 peak velocity of covert and overt saccades was higher for lateral semicircular canals (p < 0.05 and p = 0.001) compared with USH2 and controls. Covert saccades occurrence rate for horizontal SCCs could discriminate USH1 from USH2 patients and controls with a diagnostic accuracy of 85%. vHIT is a fast and non-invasive instrument which allowed us to screen and distinguish Usher patients from controls with a high precision. Importantly, its use allowed further discrimination between USH1 from USH2 groups. Moreover, VOR gain seems to correlate with vertigo-related quality of life in more severe phenotypes.


Assuntos
Reflexo Vestíbulo-Ocular , Síndromes de Usher , Humanos , Qualidade de Vida , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Vertigem , Teste do Impulso da Cabeça , Movimentos Sacádicos
2.
J Neuroimmune Pharmacol ; 18(3): 427-447, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37382830

RESUMO

Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1ß associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1ß levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aß plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1ß, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.

3.
Front Immunol ; 14: 1137635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006264

RESUMO

Multiple sclerosis is a severe demyelinating disease mediated by cells of the innate and adaptive immune system, especially pathogenic T lymphocytes that produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). Although the factors and molecules that drive the genesis of these cells are not completely known, some were discovered and shown to promote the development of such cells, such as dietary factors. In this regard, iron, the most abundant chemical element on Earth, has been implicated in the development of pathogenic T lymphocytes and in MS development via its effects on neurons and glia. Therefore, the aim of this paper is to revise the state-of-art regarding the role of iron metabolism in cells of key importance to MS pathophysiology, such as pathogenic CD4+ T cells and CNS resident cells. Harnessing the knowledge of iron metabolism may aid in the discovery of new molecular targets and in the development of new drugs that tackle MS and other diseases that share similar pathophysiology.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/terapia , Linfócitos T , Citocinas
4.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348455

RESUMO

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Fármacos Neuroprotetores , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Cladribina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Imunossupressores/uso terapêutico
5.
Inflammopharmacology ; 30(5): 1705-1716, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931897

RESUMO

Parkinson's disease (PD) remains a disease of little known etiology. In addition to the motor symptoms, depression is present in about 40% of patients, contributing to the loss of quality of life. Recently, the involvement of the autophagy mechanism in the pathogenesis of depression has been studied, in addition to its involvement in PD as well. In this study, we tested the effects of metformin, an antidiabetic drug also with antidepressant effects, on depressive-like behavior in a rotenone-induced PD model and on the autophagy process. Mice 8-week-old male C57BL/6 were induced with rotenone for 20 consecutive days (2.5 mg/kg/day) and treated with metformin (200 mg/kg/day) from the 5th day of induction. All the animals were submitted to rotarod, sucrose preference and tail suspension tests. After euthanasia, the substantia nigra and hippocampus were removed for analysis by western blotting or fixed and analyzed by immunofluorescence. The results show that there was an impairment of autophagy in animals induced by rotenone both in nigral and extranigral regions as well as a depressive-like behavior. Metformin was able to inhibit depressive-like behavior and increase signaling pathway proteins, transcription factors and autophagosome-forming proteins, thus inducing autophagy in both the hippocampus and the substantia nigra. In conclusion, we show that metformin has an antidepressant effect in a rotenone-induced PD model, which may result, at least in part, from the induction of the autophagy process.


Assuntos
Metformina , Doença de Parkinson , Animais , Antidepressivos/farmacologia , Autofagia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Qualidade de Vida , Rotenona/farmacologia , Substância Negra , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
6.
Front Immunol ; 13: 946698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967385

RESUMO

Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Receptores Purinérgicos P1 , Adenosina/imunologia , Adenosina Desaminase/imunologia , Apirase/imunologia , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Receptores Purinérgicos P1/imunologia , Transdução de Sinais
7.
Front Neurosci ; 16: 885031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573295

RESUMO

Metabolites produced by the gut microbiota have been shown to play an important role in numerous inflammatory, neuropsychiatric, and neurodegenerative diseases. Specifically, microbial metabolites have been implicated in the modulation of innate and adaptive immunity, especially in the generation of regulatory T cells (Tregs), which are key regulators of multiple sclerosis (MS) pathogenesis. Furthermore, they affect processes relevant to MS pathophysiology, such as inflammation and demyelination, which makes them attractive molecules to be explored as therapeutics in MS. In this review, we discuss the importance of these metabolites as factors contributing to disease pathogenesis and as therapeutic targets in MS. Establishing an improved understanding of these gut-microbiota derived metabolites may provide new avenues for the treatment of MS.

8.
Neurosci Biobehav Rev ; 135: 104582, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182538

RESUMO

Extracellular Vesicles (EVs) are tiny vesicles used by cells as means of cellular communication, through which the function and state of a given cell can be changed. A body of evidence has suggested that EVs could be culprits in the development and progression of various types of diseases, including neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer's Disease (AD). Unsurprisingly, EVs have also been implicate in mood, anxiety and neurodevelopmental disorders, such as Major Depressive Disorder (MDD), anxiety disorder and Autism-Spectrum Disorder (ASD), respectively. Here, we review the state-of-art regarding the roles of EVs in the aforementioned diseases and focus on the mechanisms by which they can cause and worsen disease. Harnessing the knowledge of EVs is not only important to deliver different cargos to cells in a specific manner to treat these diseases, but also to establish reliable disease biomarkers, which will aid in the early disease diagnosis and treatment, increasing the chance of successful treatment.


Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , Transtornos do Neurodesenvolvimento , Ansiedade , Transtornos de Ansiedade/metabolismo , Transtorno Depressivo Maior/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/metabolismo
9.
Int Immunopharmacol ; 102: 108415, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34890997

RESUMO

Thereabout 30-40% of patients with Parkinson's Disease (PD) also have depression contributing to the loss of quality of life. Among the patients who treat depression, about 50% do not show significant improvement due to the limited efficacy of the treatment. So far, there are no effective disease-modifying treatments that can impede its progression. The current clinical approach is based on symptom management. Nonetheless, the reuse of drugs with excellent safety profiles represents an attractive alternative strategy for treating of different clinical aspects of PD. In this study, we evaluated the effects of metformin separately and associated with fluoxetine on depressive like-behavior and motor alterations in experimental Parkinson's disease. C57BL6 mice were induced with rotenone (2.5 mg/kg/day) for 20 days and treated with metformin (200 mg/kg/day) and fluoxetine (10 mg/kg/day) from the 5th day of induction. The animals were submitted to Sucrose Preference, Tail Suspension, and rotarod tests. Hippocampus, prefrontal cortex, and substantia nigra were dissected for molecular and morphological analysis. Metformin and fluoxetine prevented depressive-like behavior and improved motor impairment and increased TH nigral positive cells. Metformin and fluoxetine also reduced IBA-1 and GFAP positive cells in the hippocampus. Moreover, metformin reduced the phospho-NF-kB, IL-1ß in the prefrontal cortex and iNOS levels in the hippocampus. Both metformin and fluoxetine increased neurogenesis by increasing KI67, but only the combined treatment increased neuronal survival by NeuN positive cells in the hippocampus. In addition, fluoxetine reduced cell death, decreasing caspase-3 and PARP-1 levels. Lastly, metformin potentiated the effect of fluoxetine on neuroplasticity by increasing BDNF positive cells. Metformin has antidepressant and antiparkinsonian potential due to anti-inflammatory neurogenic, and neuroplasticity-inducing effects when combined with fluoxetine.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Depressão/tratamento farmacológico , Fluoxetina/uso terapêutico , Metformina/uso terapêutico , Neurogênese/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Parkinsonianos/psicologia , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Western Blotting , Depressão/etiologia , Quimioterapia Combinada , Imunofluorescência , Fluoxetina/administração & dosagem , Elevação dos Membros Posteriores , Hipocampo/patologia , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Córtex Pré-Frontal/patologia , Teste de Desempenho do Rota-Rod
10.
Exp Brain Res ; 239(9): 2821-2839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34283253

RESUMO

Insulin deficiency or resistance can promote dementia and hallmarks of Alzheimer's disease (AD). The formation of neurofibrillary tangles of p-TAU protein, extracellular Aß plaques, and neuronal loss is related to the switching off insulin signaling in cognition brain areas. Metformin is a biguanide antihyperglycemic drug used worldwide for the treatment of type 2 diabetes. Some studies have demonstrated that metformin exerts neuroprotective, anti-inflammatory, anti-oxidant, and nootropic effects. This study aimed to evaluate metformin's effects on long-term memory and p-Tau and amyloid ß modulation, which are hallmarks of AD in diabetic mice. Swiss Webster mice were distributed in the following experimental groups: control; treated with streptozotocin (STZ) that is an agent toxic to the insulin-producing beta cells; STZ + metformin 200 mg/kg (M200). STZ mice showed significant augmentation of time spent to reach the target box in the Barnes maze, while M200 mice showed a significant time reduction. Moreover, the M200 group showed reduced GFAP immunoreactivity in hippocampal dentate gyrus and CA1 compared with the STZ group. STZ mice showed high p-Tau levels, reduced p-CREB, and accumulation of ß-amyloid (Aß) plaque in hippocampal areas and corpus callosum. In contrast, all these changes were reversed in the M200 group. Protein expressions of p-Tau, p-ERK, pGSK3, iNOS, nNOS, PARP, Cytochrome c, caspase 3, and GluN2A were increased in the parietal cortex of STZ mice and significantly counteracted in M200 mice. Moreover, M200 mice also showed significantly high levels of eNOS, AMPK, and p-AKT expression. In conclusion, metformin improved spatial memory in diabetic mice, which can be associated with reducing p-Tau and ß-amyloid (Aß) plaque load and inhibition of neuronal death.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Metformina/farmacologia , Camundongos , Camundongos Transgênicos , Placa Amiloide , Proteínas tau
11.
Front Immunol ; 12: 671511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054847

RESUMO

Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS) disease that affects millions of people worldwide. The search for more promising drugs for the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor (PDE5I) that has been shown to possess neuroprotective effects in the Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic pathways, but other signaling pathways were not previously covered. Therefore, the aim of the present study was to further investigate the effects of Sildenafil treatment on autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice were divided into the following groups: (A) Control - received only water; (B) EAE - EAE untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results showed that EAE mice presented a pro-nitrosative profile characterized by high tissue nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in the spinal cord.


Assuntos
Autofagia/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Estresse Nitrosativo/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-34000290

RESUMO

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.


Assuntos
Comorbidade , Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Inflamação/imunologia , Neuroimunomodulação , Anedonia/fisiologia , Barreira Hematoencefálica/fisiopatologia , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/fisiopatologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/fisiopatologia , Endocanabinoides/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Metabólicas/fisiopatologia
13.
Neuroimmunomodulation ; 28(2): 47-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33677436

RESUMO

Major depressive disorder (MDD) is a chronic affective disorder that has a strong neuroinflammatory component underpinning its etiology. Recent studies indicate that MDD is also associated with changes in the gut microbiota and that the latter is mainly modulated by diet. Microbiota-based personalized nutrition aims to provide an individual-specific diet that will yield the maximum benefit from a given diet since the gut microbiota is accounted for the variations that individuals present in response to a given food. In this review, we present and discuss 5 possible outcomes of using microbiota-based personalized nutrition. Harnessing this approach is essential to design more accurate therapies to prevent and treat MDD or to even help in drug metabolism, especially in the case of antidepressants.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Antidepressivos , Depressão , Transtorno Depressivo Maior/terapia , Dieta , Humanos
14.
Front Microbiol ; 11: 585857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362735

RESUMO

Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.

15.
Transl Psychiatry ; 10(1): 419, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268766

RESUMO

The cellular and molecular basis to understand the relationship between Chagas disease (CD), a infection caused by Trypanosoma cruzi, and depression, a common psychiatric comorbidity in CD patients, is largely unknown. Clinical studies show an association between CD and depression and preclinical evidence suggests that depressive-like behaviors in T. cruzi infected mice are due, at least partially, to immune dysregulation. However, mechanistic studies regarding this issue are still lacking. Herein, we present and discuss the state of art of data on CD and depression, and revise the mechanisms that may explain the development of depression in CD. We also discuss how the knowledge generated by current and future data may contribute to the discovery of new mechanisms underlying depressive symptoms associated with CD and, hence, to the identification of new therapeutic targets, which ultimately may change the way we see and treat CD and its psychiatric comorbidities.


Assuntos
Doença de Chagas , Transtorno Depressivo Maior , Trypanosoma cruzi , Animais , Humanos , Camundongos , Oxirredução , Estresse Oxidativo
16.
Int Immunopharmacol ; 85: 106581, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32442900

RESUMO

Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1ß, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-ß and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Citrato de Sildenafila/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Citrato de Sildenafila/farmacologia
17.
Int Immunopharmacol ; 83: 106434, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224442

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases in the world with a harmful impact on the quality of life. Although its clinical diagnosis is based on motor symptoms such as resting tremor, postural instability, slow gait, and muscle stiffness, this disorder is also characterized by the presence of early emotional impairment, including features such as depression, anxiety, fatigue, and apathy. Depression is the main emotional manifestation associated with PD and the mechanisms involved in its pathophysiology have been extensively investigated however, it is not yet completely elucidated. In addition to monoaminergic imbalance, immunological and gut microbiota changes have been associated with depression in PD. Besides, a patient group appears be refractory to the treatment available currently. This review emphasizes the mainly neuromolecular findings of the PD-associated depression as well as discuss novel and potential pharmacological and non-pharmacological therapeutic strategies.


Assuntos
Depressão/etiologia , Depressão/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Monoaminas Biogênicas/metabolismo , Depressão/terapia , Disbiose/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Inflamação/complicações , Inflamação/metabolismo , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/metabolismo
18.
Eur Neuropsychopharmacol ; 34: 1-18, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32241688

RESUMO

The disruption of the gut microbial composition, defined as dysbiosis, has been associated with many neurological disorders with inflammatory components. The alteration of the gut microbiota leads to an increase in pro-inflammatory cytokines that are associated with metabolic diseases (such as obesity and type 2 diabetes), autoimmune arthritis, and neuropsychiatric diseases. Prebiotics are defined as non-digestible carbohydrates and promote the growth of beneficial bacteria such as bifidobacteria and lactobacillus, exert beneficial effects on improving dysbiosis and its associated inflammatory state. Preclinical and clinical data indicated that some prebiotics also have positive impacts on the central nervous system (CNS) due to the modulation of neuroinflammation and thus may have a key role in the modulation of cognitive impairment, anxiety, and depression. The present manuscript reviews the state-of-art of the effects of prebiotics in cognitive impairment, anxiety, and depressive disorders. Data from clinical studies are still scarce, and further clinical trials are needed to corroborate the potential therapeutic cognitive, antidepressant, and anxiolytic of prebiotics. Prebiotics may provide patients suffering from cognitive deficits, depression, and anxiety with a new tool to minimize disease symptoms and increase the quality of life.


Assuntos
Ansiedade/dietoterapia , Disfunção Cognitiva/dietoterapia , Depressão/dietoterapia , Prebióticos/administração & dosagem , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Depressão/metabolismo , Depressão/psicologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo
19.
J Affect Disord ; 264: 138-149, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32056743

RESUMO

BACKGROUND: Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS: We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS: A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS: The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS: No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.


Assuntos
Transtorno Depressivo Maior , Inibidores da Fosfodiesterase 5 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Escuridão , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Masculino , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico
20.
Toxicol Appl Pharmacol ; 379: 114673, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323263

RESUMO

BACKGROUND AND AIM: Tadalafil displays important neuroprotective effects in experimental models of neurodegenerative diseases, however its mechanisms of action remain poorly understood. The aim of the present study was to investigate the action of Tadalafil on learning and memory, neuroinflammation, glial cell activation and neuroprotection in the experimental model of hepatic encephalopathy (HE) induced by Thioacetamide (TAA) in mice. METHODS: Mice received intraperitoneal injections of TAA, for 3 consecutive days, reaching the final dose of 600 mg/kg. Tadalafil 15 mg/kg body weight was administered by gavage during 15 days after TAA induction. Mice underwent a Barnes maze for learning and memory evaluation. RESULTS: Animals with hepatic encephalopathy showed reduced learning and spatial memory in the Barnes Maze, presented astrocyte and microglia activation and increased neuroinflammatory markers such as TNF-α, IL-1ß, IL-6, p-p38, p-ERK and p-NF-kB. In addition, the signaling pathway PKA/PKG/CREB/BDNF/NeuN/synaptophysin and glutamate receptors were deregulated by TAA. Tadalafil treatment regulated the inflammation signaling pathways restoring learning and spatial memory. CONCLUSION: Tadalafil significantly reduced neuroinflammation, promoted neuroprotection and plasticity, regulated the expression of hippocampal glutamate receptor and restored spatial learning ability and memory.


Assuntos
Encefalopatia Hepática/complicações , Transtornos da Memória/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Tadalafila/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/psicologia , Injeções Intraperitoneais , Transtornos da Memória/etiologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Tadalafila/administração & dosagem , Tioacetamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...